Continual Learning with Knowledge Transfer for Sentiment Classification

نویسندگان

چکیده

This paper studies continual learning (CL) for sentiment classification (SC). In this setting, the CL system learns a sequence of SC tasks incrementally in neural network, where each task builds classifier to classify reviews particular product category or domain. Two natural questions are: Can transfer knowledge learned past from previous new help it learn better model task? And, can old models be improved process as well? proposes novel technique called KAN achieve these objectives. markedly improve accuracy both and via forward backward transfer. The effectiveness is demonstrated through extensive experiments (Code data are available at: https://github.com/ZixuanKe/LifelongSentClass).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Semantic Knowledge Base for Transfer Learning in Sentiment Analysis

Sentiment analysis deals with the computational treatment of opinion, sentiment, and subjectivity in text, has attracted a great deal of attention. Sentiment analysis has been widely used across a wide range of domains in recent years, such as information retrieval, question answering systems and social network. This paper presents a new method for improving the semantic knowledge base for sent...

متن کامل

Lifelong Learning for Sentiment Classification

This paper proposes a novel lifelong learning (LL) approach to sentiment classification. LL mimics the human continuous learning process, i.e., retaining the knowledge learned from past tasks and use it to help future learning. In this paper, we first discuss LL in general and then LL for sentiment classification in particular. The proposed LL approach adopts a Bayesian optimization framework b...

متن کامل

Microblog Sentiment Classification with Contextual Knowledge Regularization

Microblog sentiment classification is an important research topic which has wide applications in both academia and industry. Because microblog messages are short, noisy and contain masses of acronyms and informal words, microblog sentiment classification is a very challenging task. Fortunately, collectively the contextual information about these idiosyncratic words provide knowledge about their...

متن کامل

Incorporating Lexicon Knowledge into SVM Learning to Improve Sentiment Classification

Two typical approaches to sentiment analysis are lexicon look up and machine learning. Even though recent studies have shown that machine learning approaches in general outperform the lexicon look up approaches, completely ignoring the knowledge encoded in sentiment lexicons may not be optimal. We present an alternative method that incorporates sentiment lexicons as prior knowledge with machine...

متن کامل

Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents

This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-67664-3_41